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ABSTRACT  

We assessed the climate-driven changes in ecologically relevant flow regimes expected to occur 

by the year 2100 in streams across the conterminous United States. We used long-term daily 

flow measurements from 601 gauged streams whose watersheds were in relatively natural 

condition to characterize spatial variation in 16 flow regime variables selected for their 

ecological importance. Principal component analysis of these 16 variables produced five 

uncorrelated factors that described patterns of spatial covariation in flow regimes. These five 

factors were associated with low flow, magnitude, flashiness, timing, and constancy 

characteristics of the daily flow regime. We applied hierarchical clustering to the five flow 

factors to classify the 601 streams into three coarses and eight more finely resolved flow regime 

classes. We then developed a random forest model that used watershed and climate attributes to 

predict the probabilities that streams belonged to each of the eight finely resolved flow regime 

classes. The model had a prediction accuracy (per cent correct classification) of 75%. We used 

the random forest model with downscaled climate (precipitation and temperature) projections to 

predict site-specific changes in flow regime classes expected by 2100. Thirty-three per cent of 

the 601 sites were predicted to change to a different flow regime class by 2100. Snow-fed 

streams in the western USA were predicted to be less likely to change regimes, whereas both 

small, perennial, rain-fed streams and intermittent streams in the central and eastern USA were 

predicted to be most likely to change regime. 

KEY WORDS: climate change, flow regime, classification, model, random forest 
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INTRODUCTION 

Streamflow regimes (i.e. temporal patterns of streamflow) result from the interaction of climate 

and watershed features, and will therefore likely be sensitive to climate change. Weather 

(precipitation and temperature) interacts with geology, topography, soil, and vegetation to 

influence infiltration, evaporation, and runoff generation, which together determine streamflow 

(Dingman, 2002; Brutsaert, 2005). Climate change is generally expected to affect one or more of 

these processes (Tucker and Slingerland, 1997; Bachelet et al., 2001; Held and Soden, 2006; 

Zhou et al., 2014) and hence streamflow regimes (Nijssen et al., 2001; Stewart et al., 2004; 

Christensen et al., 2004). These climate-induced hydrologic changes may then alter the 

ecological structure and function of freshwater ecosystems (Melack et al., 1997; Hauer et al., 

1997; Mulholland et al., 1997; Meyer et al., 1999; Döll and Zhang, 2010; Arnell and Gosling, 

2013; McManamay et al., 2015). For example, Hauer et al. (1997) concluded that predicted 

decreases in magnitude and earlier onset of snowmelt runoff in the Rocky Mountain region 

would make streams and rivers unsuitable for salmonids in the region. Similarly, Mulholland et 

al. (1997) argued that predicted increases in storm intensities, coupled with larger peak flows and 

lower base flows, would cause loss of stream habitat as a result of intense flushing events and 

shorter periods of inundation in riparian areas. In addition to such qualitative predictions of 

changes to stream ecosystems associated with changes in flow regime, a number of studies have 

used quantitative hydro-ecological models to assess how predicted future climate is likely to alter 

ecological flow regimes. For example, based on global water model simulations, Döll and Zhang 

(2010) concluded that ecologically relevant flow characteristics will be more altered by climate 

change than they have been by withdrawals and dams. Similarly, the simulations conducted by 

Arnell and Gosling (2013) that coupled an ensemble of climate model projections with a global 
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hydrological model predicted that winter runoff will increase, and summer runoff will decrease 

in response to climate change in northern parts of the USA by 2050. 

Although researchers generally accept that climate change will alter both hydrologic and 

ecosystem processes in streams, we do not yet possess a robust understanding of how the effects 

of climate change will differ within and across regions (Tague et al., 2008; Chang and Jung, 

2010; Jung et al., 2012). A few researchers have examined the projected effects of climate 

change on streamflows at a regional scale e.g., (Stewart et al., 2004; Christensen et al., 2004; 

Maurer and Duffy, 2005; Thodsen, 2007; Reidy Liermann et al., 2012), but to our knowledge, no 

assessment has been conducted of the potential effects of climate change on the flow regimes of 

streams across the full range of climatic and physiographic conditions that occur within the 

conterminous United States (CONUS). At such continental scales, some patterns of flow 

response to climate may occur that are not apparent in regional studies, which typically 

encompass smaller ranges of climate and hydrophysical conditions. 

In this paper, we examine the potential effects of projected climate change on the natural flow 

regimes of streams within the CONUS. Such an assessment should help reveal where, within the 

CONUS, streams and rivers may be especially vulnerable to climate-induced shifts in 

ecologically important aspects of streamflow, and what kinds of stream are most and least 

vulnerable. Moreover, we expected the study to help identify the specific climatic factors and 

watershed attributes that influence the sensitivity of flow regimes to climate change. 

METHODS 
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General approach 

To address our objective, we had to complete three major tasks: (i) obtain or develop a 

classification of flow regimes that was informed by ecological theory and applicable to the entire 

CONUS; (ii) model how flow regime classes vary with current climate and watershed features; 

and (iii) link this model to downscaled climate projections to predict how flow regime classes 

may change in the CONUS with long-term changes in precipitation and air temperature. We first 

selected 16 flow variables that collectively described five aspects of the flow regime that 

ecologists consider to be important to stream ecosystem structure and function: magnitude, 

frequency, timing, duration, and rate of change (Poff et al., 1997). We then used principal 

component analysis (PCA) to identify independent axes of variation in these 16 variables across 

sites. The PC factors were used in a hierarchical classification to identify different types of flow 

regimes. We then developed empirical models to predict the most probable type of streamflow 

regime at individual streams from climate and watershed attributes. These space-for-time models 

allowed us to predict how the flow regimes present at individual streams sites should change 

with projected changes in precipitation and temperature. 

Several researchers have previously classified US streams in terms of their flow regimes 

(Sanborn and Bledsoe, 2006; Chinnayakanahalli et al., 2011; McManamay et al., 2012; Reidy 

Liermann et al., 2012; Archfield et al., 2013), and a few have developed classifications that 

apply to most of the USA (Poff and Ward, 1989; Poff, 1996; Archfield et al., 2013; McManamay 

et al., 2014). However, previous classifications largely followed Poff in standardizing flow 

magnitude variables by either catchment area or mean daily flows. We wanted to use a 

classification of flow regimes that incorporated the absolute magnitude of flow because (i) flow 

volume is important to stream ecosystem structure and function (Vannote et al., 1980; Freeman 
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and Marcinek, 2006; McKay and King, 2006; Anderson et al., 2006; Poff and Zimmerman, 

2009; Carlisle et al., 2011; Chinnayakanahalli et al., 2011) and (ii) initial flow volume may 

influence the likelihood of climate-induced shifts between some aspects of flow regimes (e.g. 

perennial vs intermittent). We therefore developed a flow regime classification that was inspired 

by and similar to previous CONUS-wide classifications but which explicitly incorporated the 

absolute magnitude of flow.  

Data source and inclusion criteria 

We used long-term, daily flow measurements from 601 reference-condition stream sites (i.e. 

watersheds with minimal land use and streams with minimal flow alteration) contained in the 

GAGES (Falcone et al., 2010) data (refer to the Selection of stations section in the succeeding 

texts). These data were used to estimate values for several flow metrics that represented different 

aspects of a stream's flow regime. 

Selection of flow variables 

We selected 16 flow variables for use in our analyses that, based on previous studies, well 

characterized ecologically important differences in flow amongst streams (Table 1, Appendix A). 

We recognize that classification outcomes, as well as assessments and interpretation of the 

effects of climate change on flow regimes, can be sensitive to the selection of the specific flow 

variables used in analyses (Olden et al., 2012). However, the use of many (10–100 s) flow 

variables can also obscure the physical interpretation of analyses, and produce classifications that 

may not match well with research or management objectives. Our view is that useful 

classifications should be both informed by theory and easily interpreted. We therefore selected a 

relatively small set of flow variables that collectively spanned the major dimensions of 
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streamflow variation that ecologists view as important in maintaining stream ecosystem structure 

and function. We also choose not to differentially weight variables, because we have little a 

priori knowledge regarding the specific flow dependencies of different aquatic species and 

ecological processes. During variable selection, we tried to avoid excessive statistical 

redundancy amongst variables included in the analyses (correlations amongst variables are 

shown in Appendix A). We also found that the selection of specific variables to use in analyses 

was not always straightforward, especially when either many variables were available that 

describe a single, major aspect of flow, or variables had nonintuitive or problematic statistical 

properties. The most prominent of these issues was the selection of the specific high-flow and 

low-flow variables to use.  

 Of the 23 high-flow condition variables listed by Olden and Poff (2003), we selected two 

that we thought collectively characterized the important aspects of high-flow conditions: bank 

full flow and average seven-day maximum flow. Bank full flow is of potential ecological 

importance because it is related to streambed mobilization, channel morphology, and flood plain 

connectivity—all of which are important to stream biota. Average seven-day maximum flow 

quantifies aspects of high-flow magnitude as well, but also incorporates duration of sustained 

high flows.    

Nonintuitive associations between flow constancy, the base flow index (BFI), and the 

fraction of zero days (ZDF) made the selection of low-flow variables complicated. Although 

these three variables were somewhat correlated, many streams with high constancy values were 

intermittent and had a large number of days with zero flow. The association between these three 

variables missed characterizing the steadiness (constancy) of flow in large perennial streams that 

often have high BFI. We therefore developed an extended low-flow index (ELFI) calculated as 
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BFI − ZDF, which describes a flow pattern that varies from many days of zero flow to high 

relative amounts of more constant base flow contributions to the stream (refer to Dhungel (2014) 

for details). Combining ZDF and BFI in this way also addressed a statistical problem in their 

normalization as both had multiple zero values. After combining BFI and ZDF into the ELFI, 

flow constancy loaded with flow predictability on a separate PC axis, a result that made more 

sense physically in that it quantified the constancy and generally higher overall predictability of 

flows in large perennial streams. 

Selection of stations 

To assess the effects of climate on natural flow patterns, we needed flow data from a set of 

streams that were least affected by human influence. GAGES (Falcone et al., 2010) contains US 

Geological Survey flow records for streams draining 6785 watersheds. Falcone et al. (2010) 

identified 1512 of these watersheds as being least influenced by human activity. We wanted to 

compute naturally occurring streamflow metrics that were as robust as possible, so we used only 

the 601 of these 1512 sites that had 90% complete flow records over a 45-year period (1965 to 

2010) for our analysis. These sites ranged from Strahler stream order 1 to 11, with a mean annual 

flow ranging from 0.03 to 245 m3/s (Figure 1). The vast majority of the 601 sites were order five 

or less with a mean annual flow less than 10 m3/s. The findings of this study are therefore 

limited to this range of stream sizes. We do not consider this truncated representation of stream 

sizes as a significant limitation, because the vast majority of streams in the USA fall into this 

group. 
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Flow, watershed, and climate data 

We assembled flow, watershed, and climate data for the 601 sites. Daily flow records were 

obtained from the US Geological Survey National Water Information System, and used to 

compute the 16 flow regime variables. TauDEM, a set of GIS terrain analysis software tools 

(Tarboton, 2005), was used to delineate the watersheds for these sites. We then computed 51 

watershed and climate attributes for these watersheds (Appendix B) for use in predicting flow 

regime class. We followed (Sanborn and Bledsoe, 2006; Chinnayakanahalli, 2010) in using 

monthly climate data in these analyses. Historic monthly climate data were assembled from the 

Parameter-elevation Regression on Independent Slope Model (PRISM) dataset (Daly et al., 

1994). Short-duration streamflow properties are responsive to short-term weather processes, but 

the limited availability of these data precluded their use in our analyses. 

Identifying independent dimensions of flow regimes with principal component analysis 

We used PCA to identify the main independent dimensions of flow variation amongst sites. We 

applied PCA with varimax rotation to the matrix of pairwise correlations between different flow 

variables following procedures detailed by Jackson (1991). In ideal applications of PCA, all 

associations between variables are linear, and variables are normally distributed (McCune et al., 

2002). However, Q–Q plots and box plots showed that the distributions of most of the variables 

were non-normal, so we normalized those that required transformation with Box–Cox 

transformations. The parameter ‘lamda’ for the Box–Cox transformation was chosen to 

maximize the W-statistic in a Shapiro–Wilk normality test. Normality was achieved for all the 

variables except for the frequencies of low-flow events and zero-flow events, whose distributions 

were strongly influenced by clusters of zero values. Although we were not able to achieve 
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complete normality for low-flow events and zero-flow events, we retained transformed versions 

of them in the analyses because they contain information on ecologically important aspects of 

flow not described by other variables. After transformation, all variables were standardized by 

subtracting their mean, and dividing by their standard deviation to equally weight their influence 

on PCs (Jackson, 1991). We used the ‘principal’ function from the ‘psych’ R library (Revelle, 

2013) to perform the PC analysis. Following an initial PCA that identified only those PCs that 

had eigenvalues greater than 1, we used varimax rotation to align the selected PCs along axes 

that maximized the correlation between original variables and PC factors. If any of the 16 

variables had a loading less than 0.6 (a value we interpreted as indicating a strong loading) on 

any of the rotated PCs, we iteratively added components to the PCA based on their eigenvalues. 

We repeated this process until all of the 16 variables had a loading greater than 0.6 on one of the 

rotated PCs. This process resulted in a matrix of factor scores, F, with a dimension of 601 sites 

by five PCs.  

Flow regime classification 

We followed Olden et al. (2012) in using Ward's method of hierarchical, agglomerative 

clustering (Ward and Hook, 1963) to create a dendrogram that identified similarity amongst sites 

in flow patterns as measured by associations amongst sites in the five PC factor scores. We used 

the ‘hclust’ function in the R stats library (R Development Core Team, 2009) to conduct this 

analysis with Euclidean distance as the measure of similarity between sites or groups of site. 

Many approaches can be used to create classifications (Olden et al., 2012; McManamay et al., 

2012), and the choice of method can affect classification outcomes. However, Ward's 

classification with Euclidean distances is one of the most widely used methods, and produces 

more realistic classifications than many other methods (McCune et al., 2002; Olden et al., 2012). 
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Unlike nonhierarchical classification methods such as K-means (MacQueen, 1967), where the 

number of classes must be specified a priori, in Ward's method, the number of classes is selected 

based on a post-hoc interpretation of the dendrogram's structure. Ward's method was therefore 

useful in that the selection of specific clusters could be guided by our ability to physically 

interpret them. 

Random Forest stream class prediction model 

We used random forest (RF) (Breiman, 2001) to statistically model the probability of flow 

regime class membership as a function of climate and watershed properties. RF creates many 

classification trees by iteratively sampling a random fraction of the calibration data, and creating 

classification trees from each sample. Prediction is then based on a majority vote across the 

many classification trees. Model error was quantified by comparing out-of-bag predictions (i.e. 

withheld observations) for each site with the original classification. 

For this model, we used 34 climate, 7 soil, and 10 topographic and geomorphology 

candidate predictor variables (Appendix B). For climate variables, we used the PRISM dataset 

(Daly et al., 1994). For soil variables, we used soil attributes from the State Soil Geographic 

dataset (Wolock, 1997). We used the Multi-Watershed Delineation tool (Chinnayakanahalli, 

2010) to delineate watersheds from digital elevation models obtained from the National 

Elevation Dataset along with stream network data. The Multi-Watershed Delineation tool uses 

TauDEM (Tarboton, 2005) and ArcGIS functionality to delineate watersheds and derive 

watershed topographic attributes. 

Prediction of flow regime class change in response to climate change 
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We generated 4-km resolution climate projections by combining dynamical and statistical 

climate downscaling techniques. We first used the Weather Research and Forecasting model 

(WRF; http://wrf-model.org/index.php) to dynamically downscale the 150-km resolution 

projections generated by the NCAR Community Climate System Model version 3 produced for 

the IPCC 4th assessment (IPCC, 2007) based on the A2 emission scenario (Nakicenovic et al., 

2000) . The CCSM data were bias-corrected with National Centers for Environmental Prediction 

reanalysis data before they were dynamically downscaled to 50-km resolution with the WRF 

model. Such bias corrections were performed with both statistical regression and atmospheric 

equations to maintain physical consistency amongst the atmospheric variables such as 

temperature, humidity, geopotential height, and wind (refer to details in Meyer and Jin, (2015)). 

The 50-km resolution WRF precipitation and temperature projections were further downscaled 

with statistical regression to a 4-km spatial and 1 month temporal resolution based on the PRISM 

data (Daly et al., 1994). Use of monthly climate data avoids uncertainties introduced as a result 

of poor climate model reproduction of high-frequency weather. The statistical downscaling based 

on PRISM adjusts for orographic effects that are not well captured in coarse-resolution climate 

models. These forecasts were the same as used by Hill et al.  (2014) , who provide comparisons 

of these predictions with those of other combinations of global and regional climate models. 

Climate conditions were projected for the years 2001–2010 and 2090–2099 (referred hereafter as 

the 2000s and 2090s respectively). These 4-km climate projections were then aggregated over 

the watersheds of each site to describe watershed-scale climate, which were then used in the RF 

model to predict changes in flow regime classes. 
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RESULTS 

Major attributes of flow regimes 

The PCA identified five major axes of flow variability across the study basins. The application of 

Kaiser's rule (PC eigenvalues greater than 1) (Kaiser, 1958) resulted in an initial selection of four 

PCs, but predictability and contingency had loadings less than 0.6. Adding a fifth PC resulted in 

all 16 flow variables having loadings greater than 0.6, and 86% of the total variance present in 

the original 16 flow regime variable was associated with the five PCs (Table 1). The pattern of 

loadings of the 16 flow variables on the five PCs was intuitive and physically interpretable. The 

first PC represented variation amongst basins in low flows. The other components represented 

variation in overall magnitude, flashiness, timing, and constancy of flow. 

Classification of flow regimes 

We identified three distinct classes of streamflow regime (A, B, and C) as well as eight more 

finely resolved subclasses (Figure 2). The classes differed from one another in one or more flow 

factors as indicated by both box plots showing the distribution of PCA factor scores within 

classes (Figure 3) and daily flow patterns for representative streams in each class (Figure 4). The 

seasonal pattern of snowmelt-driven flow, characterized by low flashiness, was the primary 

factor associated with class A. Classes B and C had flashier flows, but differed in terms of the 

extended low-flow index, which separated intermittent streams (B) from perennial streams (C). 

Within the snow-fed streams (A), magnitude of flow distinguished A1 (small) from A2 (large) 

streams. Within intermittent streams (B), B1 streams were smaller with more extended periods of 

no flow than B21 and B22 streams. B21 and B22 streams differed in terms of whether flows 

occurred primarily in winter (B21) or summer (B22). Within the perennial streams (C), C1 
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streams had early (winter) timing and more constant flows than C21 and C22 streams, which had 

a more seasonal pattern. C21 and C22 streams differed in size. C21 streams had smaller flows 

than C22 streams. We thus interpreted the eight stream classes to represent the following flow 

regimes: (A1) smaller perennial snow-fed streams, (A2) larger perennial snow-fed steams, (B1) 

smaller intermittent streams, (B21) larger intermittent streams with winter flow, (B22) larger 

intermittent streams with summer flow, (C1) perennial streams with mostly winter flow, (C21) 

smaller perennial streams with nonseasonal flow, and (C22) larger perennial streams with 

nonseasonal flow.  

Spatial structure was evident for some of the classes (Figure 5). Classes A1 and A2 streams were 

found mostly in the north mid-western USA, with larger (A2) streams occurring in the northern 

part of the USA, and smaller (A1) streams occurring more in the south. Class B1 streams 

dominated the xeric areas of North and South Dakota as well as southern parts of California and 

Arizona. Class B22 streams occurred mostly in the central USA and across parts of Texas. B21 

streams occurred mostly in the central part of the eastern USA. Sites belonging to class C1 

occurred along the northwestern coast of the USA. Class C21 occurred along the Appalachian 

Mountains and in the Northeastern USA. Streams in Class C22 did not have an obvious spatial 

structure, but mainly occurred in different regions within the northern USA. 

Random forest model predictions of flow regime class 

Seven predictor variables were selected from the watershed and climate attributes listed in 

Appendix B for use in the random forest model to predict flow regime classes. The variables 

selected by the model were watershed area (AREA), percentage of precipitation that occurs when 

mean air temperature is less than zero (assumed to be snow) (PREC_SNM), the difference 
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between mean annual maximum and mean annual minimum precipitation (DIFF_P), soil 

permeability (PRMH_AVE), proportion of annual precipitation that occurs in June 

(PRECIP_Jun_SC), mean elevation of the watershed (ELEV_MEAN), and proportion of annual 

precipitation that occurs in October (PRECIP_Oct_SC). The overall prediction 

(misclassification) error of the model was about 25%, but varied amongst classes (Table 2) 

ranging from 14% (Class C21) to 43% (Class B21) (cf., Figure 5 and Figure 6 (top)). The larger 

error for class B indicates that the model is not able to predict aspects of low flow as well as 

other flow attributes. 

Predicted changes in flow regime classes in the 2090s  

The likelihood of streams changing flow regime class in response to projected climate change 

depended on the initial regime class (Table 3). The smallest per cent of sites were predicted to 

change class in the perennial snow-fed stream classes (A1 and A2). The highest per cent of class 

changes were predicted for intermittent streams with winter flows (B21) and intermittent streams 

with summer flows (B22), for which more than 50% of sites were predicted to change class. 

Many intermittent streams with winter flows (B21) were predicted to change to either 

intermittent streams with summer flows (B22) or small perennial streams (C21). Many 

intermittent streams (B21 and B22) were predicted to become perennial streams (C classes). 10% 

of perennial streams (C classes) were predicted to become intermittent (B class streams). 

Predicted changes in flow regime also showed a spatial pattern (Figure 6). Many 

predicted flow regime changes occurred across Nebraska, Kansas, the Dakotas, central Texas, 

the eastern part of Kentucky, and in central Virginia, where many intermittent streams (B 

classes) were predicted to change into perennial rain-fed streams (C classes). Many currently 
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perennial streams (C classes) in South Dakota, in and around North Carolina, and in parts of 

Illinois and Indiana were predicted to change into intermittent (B classes) streams. Along with 

these major class changes, in which stream permanence changed, more subtle changes were 

predicted to occur in some of the more finely resolved stream classes. Some intermittent streams 

with winter flow (B21 classes) around the southern parts of Indiana were predicted to change to 

intermittent streams with summer flow (class B22). Similarly, some intermittent streams with 

summer flow (B22 class) in the central Texas region were predicted to change to small 

intermittent streams (B1 class). Subtle changes in timing and magnitude of some perennial 

streams were also predicted. Perennial streams with winter flows (C1 class) were predicted to 

change to smaller perennial streams with less-seasonal flows (C21 class) around the coast of 

Louisiana along with some sites around the southwestern edge of North Carolina. Many small 

perennial streams with nonseasonal flows (C21 class) were predicted to change to perennial 

streams with primarily winter flows (C1 class) around West Virginia and Connecticut. Some 

larger perennial streams (C22 class) were predicted to change to perennial streams with primarily 

winter flows (C1 class) in West Virginia.  

DISCUSSION 

The usefulness of our analyses for ultimately understanding and predicting how stream 

ecosystems and their biota will respond to climate change depends on several assumptions and 

conditions. First, we assumed that the flow variables, and the regimes derived from them, are 

ecologically meaningful. Second, we assumed that the models we developed to predict how flow 

regimes vary with watershed attributes and current climate conditions are sufficient to adequately 

describe important spatial variation amongst streams in their flow regimes. Third, we assumed 

that the climate models we used produced a reasonably plausible representation of future climate 
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conditions in the CONUS. Finally, we assumed that the predictions from the empirical 

watershed–climate–flow model were informative of future flow regimes, recognizing the 

inevitable uncertainties in these predictions. We address each of these issues in detail below.  

Relevance of streamflow variables and regimes (assumption 1) 

The utility of our analyses for subsequent ecological assessments depend on how ecologically 

meaningful our characterizations of flow regimes were. We faced two conceptual and 

methodological challenges in this respect: (i) choice of the flow variables to include in analyses; 

and (ii) how to meaningfully characterize flow regimes as the simultaneous, multivariate 

variation in those flow variables across sites. Given that the specific flow dependencies of most 

stream species are unknown, we used insights from previous ecohydrological studies and 

discussion with stream ecology colleagues to select the 16 flow variables we used in the 

analyses. Each of these variables has been identified in the literature as being important to at 

least one species or functional process, and collectively, they characterize the main ecologically 

important dimensions of streamflow and are consistent with the flow variables used in other 

analyses (McCargo and Peterson, 2010; Chinnayakanahalli et al., 2011; Rolls et al., 2012). The 

use of only 16 key variables produced classifications that were qualitatively similar to the 

classifications produced by others based on a larger number of flow variables (Reidy Liermann 

et al., 2012; McManamay et al., 2014; Leasure et al., 2016) . Moreover, restricting our analyses 

to a manageable number of variables facilitated the interpretation of the PCA and classification 

results. This physical interpretation guided iterative addition, combination, and removal of 

variables to arrive at the final set of variables that we used.  
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Prediction of flow regime class from watershed and climate variables (assumption 2) 

We demonstrated that the flow regime classes we identified can be predicted from watershed and 

climate variables. Others have previously developed models to predict flow regime from 

watershed and climate variables (Sanborn and Bledsoe, 2006; Chinnayakanahalli et al., 2011; 

Reidy Liermann et al., 2012), but only Reidy Liermann et al. have used modelled climate data to 

predict flow regime class, albeit at a regional scale. Our modelling indicated that we could 

predict the natural streamflow regime classes with a mean accuracy of 75% with a small set of 

seven climate, geomorphological, and watershed soil variables. The random forest modelling 

approach we used successfully predicted smaller, snow-fed streams with high accuracy, but did 

not perform as well for intermittent and rain-fed streams.  

The spatial structure of the flow classes we derived appears to be consistent with well-

established spatial variation in climatic conditions across the CONUS, although classes were not 

geographically distinct. Some regions have a number of different stream classes intermingled 

and in close proximity. This intermingling was expected, given our reliance on magnitude 

variables, because streams vary in size regardless of climate and geological differences. The 

influence of geological differences on flows in close proximity has been noted by others (Poff, 

1996; McManamay et al., 2012; Reidy Liermann et al., 2012; Eng et al., 2015). The fact that 

flow size variables were major discriminators in going from 3 to 8 classes in the hierarchical 

classification demonstrates that stream size is an important attribute in our classification. We 

think that including magnitude in the classification of flow regimes is important, given the 

importance of flow volume to stream biota and the likelihood that climate change will affect the 

magnitude of flow in some streams. Our results also imply that streams with larger discharges 

may be less vulnerable to climate change than smaller streams.  
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These types of models have application beyond our primary objective (predicting the 

potential effects of climate change on flow regime at our study sites) in that they can predict the 

flow regimes of ungauged sites anywhere within the CONUS where watershed and climate 

attributes can be quantified. Given the importance of flow to stream ecosystems and the need to 

assess the status of environmental and ecological conditions of streams and rivers, there is a 

critical need to predict the natural flow regimes that characterize the millions of ungauged 

reaches in the USA and elsewhere (Poff et al., 2009; Hawkins et al., 2010; Chinnayakanahalli et 

al., 2011; Carlisle et al., 2014; Tonkin et al., 2014). 

Future predictions of flow regime classes (assumptions 3 and 4) 

The degree to which of our predictions of future flow regimes were realistic depends on two 

aspects of our modelling. First, the climate projections we used, originating in general circulation 

models, have known biases, which contribute to uncertainty in model predictions. We used 

statistical approaches to reduce the effect of these biases (Meyer and Jin, 2015), but such 

approaches cannot completely remove all the biases. Second, lack of stationarity in hydrologic 

systems has cast doubt on the use of stationary empirical models (Milly et al., 2008). This 

uncertainty propagates into the prediction of flow regimes. We recognize that this uncertainty 

affects the accuracy of the climate projections within the CONUS, and that the robustness of our 

results must be interpreted in the context of these uncertainties (Hill et al., 2014). These 

uncertainties appear to be highest when predicting the flow regimes of streams that are near the 

transition between perennial and permanent flows. There were both more uncertainty and more 

predicted class change in intermittent and rain-fed streams than snow-fed streams. These 

differences imply that the seasonal regime of snow-fed streams will be more robust to climate 

change than other types of regimes at the level of classification used here. Further work that 
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identifies variables that discriminate subtler aspects of snow-fed flow regime may be needed to 

better understand the potential for change in snow-fed systems.   

Our study anticipates that a number of changes in flow regime classes associated with predicted 

climate change by the end of the century will occur. For example, flow regimes in the central and 

eastern part of the USA were predicted to be more likely to change than those in the western 

USA. Specifically, a considerable proportion of intermittent streams in central USA (B21 and 

B22) and eastern USA (B21) were predicted to change into perennial type (Class C). These 

predictions for some currently intermittent streams to become perennial and vice versa are 

consistent with other climate model predictions that predict that temperatures will increase in 

both the north-central and eastern parts of the USA, whereas precipitation is projected to increase 

in just the eastern USA (IPCC, 2013). The prediction that many currently intermittent streams 

could switch to perennial status is important because considerable concern currently exists 

regarding the tendency for historically perennial streams to become intermittent as a result of 

both direct extraction and groundwater pumping (Larned et al., 2010). Moreover, we know 

considerably less about either the hydrology or ecology of historically intermittent streams than 

perennial streams simply because they have been less studied than permanent streams (Eng et al., 

2015; Cid et al., 2016). Our results identify a potential pattern in how streamflows may respond 

to climate change that, to our knowledge, has not been identified or emphasized by other studies. 

Our results indicate that in western mountainous regions, the snow-fed regimes of many 

streams may be relatively insensitive to climate change, at least in terms of the flow regime 

classes used here. These results are consistent with analyses conducted by (Poff et al., 1996) who 

showed that rainfall-driven flow regimes were more sensitive to climate change than snowmelt 

regimes, but they contrast with those of (Reidy Liermann et al., 2012) who predicted that many 
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streams in Washington state would shift from snow-fed dominated streams to rain-fed streams by 

2040s with an accompanying reduction in annual discharge. However, our results are not directly 

comparable with (Reidy Liermann et al., 2012) because they used a different climate change 

scenario. Their study also focussed on a smaller area in which precipitation appears to be 

especially vulnerable to shifts from snow to rain. Although our results indicate that the effects of 

climate alone on the seasonal nature and pattern of streamflow may not greatly alter streamflow 

regimes across the mountainous areas of the western USA as a whole, further work that identifies 

variables that discriminate subtler aspects of snow-fed flow regime may be needed to better 

understand the potential for change in snow-fed systems. Also, the pervasive presence of land 

use in most watersheds (Falcone et al., 2010)  will most likely interact with climate change to 

influence streamflow regimes (Ordonez et al., 2014; Kuemmerlen et al., 2015).  

CONCLUSIONS 

We conducted these analyses to better understand the likely hydrological consequences of 

climate change for stream biota and their ecosystems, a general concern amongst stream 

ecologists (Palmer et al., 2008; Tonkin et al., 2014). Given the uncertainty in the magnitude of 

future emissions of greenhouse gases and differences between climate models in their specific 

predictions, it is impossible to predict with certainty how the flow regimes in streams of the USA 

and elsewhere will change. However, our study indicates that climate-induced changes in 

streamflow are likely to be both significant and variable across the USA. Improving our 

understanding of what specific types of streams will be most vulnerable to climate change, and 

how climate-induced changes in flow regimes will affect stream ecosystem structure and 

function is a critical research priority. The streamflow regime classification we developed 

allowed us to characterize streamflow regimes at the scale of the CONUS, was physically 
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interpretable, and was sufficiently resolved that we could assess how different streamflow 

regimes may change in response to projected climate changes. The explicit choice to include 

flow magnitude as a classification variable helped reveal that stream size is likely to influence 

the vulnerability of individual streams to climate change. In a following paper, we will describe 

how these projected shifts in flow regimes are predicted to affect the biodiversity patterns of 

stream invertebrates. 
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Table 1. Loadings of the 16 Box-Cox transformed flow variables on 5 varimax-rotated principal components. Loadings with 

magnitude greater than 0.6 are indicated in bold. 

Flow Variables  

Rotated Principal Components 

PC1 PC2 PC3 PC4 PC5 

Extended Low Flow Index (ELFI) 0.83 0.05 0.05 0.15 -0.14 

Coefficient of Variation of Daily Flows (DAYCV) -0.82 -0.07 0.07 0.04 0.36 

Contingency (M) 0.67 -0.01 -0.44 -0.23 0.1 

Low Flow Event Frequency (LFE) 0.84 0.13 0.29 0.02 -0.05 

Zero Flow Event Frequency (ZFE) -0.85 -0.17 -0.01 0.05 0.22 

Average 7 day Minimum Flow (Qmin7) 0.71 0.58 0.01 0.07 -0.25 

Mean daily discharge (QMEAN) 0.31 0.93 0.03 -0.08 -0.14 

Bank Full Flow (Q167) 0.01 0.97 0.21 -0.12 0 

Average 7 day Maximum Flow (Qmax7) 0.08 0.99 0.03 -0.07 -0.01 

Flow Reversal(R) 0.54 0.12 0.68 0 -0.14 

Flood Duration (FLDDUR) 0.09 -0.07 -0.84 0.2 0.18 

High Flow Event Frequency (HFE) 0.02 0.1 0.91 -0.22 -0.07 

50% timing of flow (T50) 0.04 -0.11 -0.36 0.79 0.2 

Time of Peak (Tp) -0.02 -0.09 -0.08 0.89 -0.01 

Predictability (P) -0.3 -0.08 -0.36 0.05 0.86 

Constancy (C) -0.56 -0.11 -0.1 0.2 0.73 

Proportion of variance explained (cumulative) 0.28 0.21 (0.49) 0.16 (0.65) 0.1 (0.75) 0.11 (0.86) 

Interpretation 
Low Flow  

(L) 
Magnitude 

(Q) 
Flashiness 

 (F) 
Timing 

 (T) 
Constancy  

(C) 
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Table 2. Out-of-bag random forest model confusion matrix showing prediction error 
for each flow regime class based on model calibration data for the period 1965 – 
2010 

 
 

Predicted  
A1 A2 B1 B21 B22 C1 C21 C22 Error 

O
bs

er
ve

d 

A1 54  2   1 7 1 17% 

A2 4 28      6 26% 

B1 3  36 3 8 4 5 3 42% 

B21   1 24 3 1 11 2 43% 

B22   1 1 33  2 6 23% 

C1   6 1  54 3 5 22% 

C21   5 4 1 2 151 13 14% 

C22 4 3 5 2 3 5 14 70 34% 

 

 

Table 3: Matrix showing predicted change (%) in flow regime class between 2001-2010 
and 2090-2099. 

 

2090-2099 Predictions  
A1 A2 B1 B21 B22 C1 C21 C22 % Change 

20
01

 –
 2

01
0 

P
re

di
ct

io
ns

 

A1 56 1 1 
    

1 5% 

A2 
 

29 
      

0% 

B1 
  

45 
 

3 2 2 9 26% 

B21 
  

1 8 5 3 9 1 70% 

B22 
  

5 1 22 9 3 13 58% 

C1 1 
 

2 1 2 75 7 5 19% 

C21 
 

1 10 12 
 

35 104 9 39% 

C22 
 

3 2 1 
 

10 2 90 17% 
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Figure 1.  Ranges of mean annual flow and Strahler stream order across the study sites. 
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Figure 2. Classification dendogram. The eight classes are – (A1) small perennial snow fed 

streams, (A2) large perennial snowfed steams, (B1) small intermittent streams, (B21) intermittent 

streams with winter flow, (B22) intermittent streams with summer flow, (C1) perennial streams 

with winter flow, (C21) small perennial streams, and (C22) large perennial streams. 
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Figure 3. Box plots showing the distribution of varimax-rotated principal component factors for 

eight stream classes. The sample size (n) for each class is given. X-axis labels indicate the 

varimax-rotated principal component factors from Table 1 with L = Low Flow, F = Flashiness, Q 

= Magnitude, T = Timing, C = Constancy. 
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Figure 4. Daily flow patterns for the archetypical stream in each class (i.e., the stream closest to 

the median of each of the PC factors). Gray shading gives the 5th to 95th percentile range of daily 

flows, fine lines give 25th and 75th percentile, and the bold (red) line gives the 50th percentile 

(median).  The stream closest to the median was determined using Euclidean distance computed 

in the PC factor space. 
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Figure 5. Spatial distribution of streams assigned to the 8 flow regime classes. 
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Figure 6. (a) Predicted flow regime classes based on 2000s climate. (b) Predicted flow regime 
class based on 2090-2999 projected climate change. 
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Appendix	A:	Streamflow	Variables	Used	to	Classify	Flow	Regimes	

Sulochan Dhungel, David G. Tarboton, Jiming Jin, Charles P. Hawkins 

Potential Effects of Climate Change on Ecologically Relevant Streamflow Regimes 

The following variables were selected to characterize ecologically relevant aspects of the 

streamflow regime.  This relatively small set of flow variables was selected to collectively span 

the major dimensions of stream flow variation that ecologists view as important in maintaining 

stream ecosystem structure and function. We tried to avoid excessive statistical redundancy 

among variables selected and report (Table A-1) correlations among variables evaluated using 

the 601 GAGES sites used in this study. Additional details on the definition of these variables 

and examples on their evaluation are given in Dhungel (2014). 

1. Zero Flow Event Frequency (ZFE) is the average number of zero flow events per year.   

A zero flow event is a contiguous series of days within a year when daily flow is zero. 

2. Extended Low Flow Index (ELFI) is a combination of Base Flow Index and Zero Days 

Fraction. Base Flow Index (BFI) is the ratio of lowest daily flow to annual average flow.  

Zero Days Fraction (ZDF) is fraction of days in a year with zero flow.  BFI is zero for 

streams that go dry, while ZDF is zero for streams that do not go dry.  Thus one of these 

is always zero, and in terms of quantifying the amount of time a stream is dry or how 

close to becoming dry a stream becomes BFI and ZDF complement each other. ELFI is 

defined as ELFI = BFI-ZDF to, on a scale from -1 to 1, quantify both these effects and 

avoid statistical problems due to a large group of values being at 0 which occurs for BFI 

and ZDF when they are used separately.   
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3. Low Flow Event Frequency (LFE) is the average number of low flow events per year.  A 

low flow event is a contiguous series of days within a year when daily flow falls below 

the 5th percentile of the entire series. 

4. Average 7 day Minimum Flow (Q7min) is the average across years of the minimum of 

the seven day average flows within a year. 

5. Average 7 day Maximum Flow (Q7max) is the average across years of the maximum of 

the seven day average flows within a year. 

6. Bankfull flow (Q167) is the daily flow value that has a probability of exceedance of 

1/1.67 from a log-normal probability distribution fit to the annual maximum daily flow 

series.  This is sometimes used in geomorphology as an estimate of bank full flow 

(Dunne and Leopold, 1978; Poff and Ward, 1989). 

7. Flood Duration (FLDDUR) quantifies the duration of flooding as the average number of 

days per year when the daily flow equals or exceeds Q167.  

8. Time of Peak (Tp) is the time of peak flow calculated from the daily average across all 

the years. 

9. High Flow Event Frequency (HFE) is the average number of high flow events per year.   

A high flow event is a contiguous series of days within a year when daily flow is above 

the 95th percentile of the entire series. 

10. Mean Daily Discharge (QMEAN) is the mean daily discharge. 

11. Coefficient of Variation of Daily Flows (DAYCV) is the ratio of the standard deviation 

of daily flows to the average of daily flows. 

12, 13, 14. Colwell’s Indices of Predictability (P), Constancy (C) and Contingency (M) are 

measures of uncertainty based on information theory presented by Colwell (1974). These 
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were computed by grouping daily streamflow values into 7 states  (<0.5 QMEAN, 0.5 

QMEAN to 1.0 QMEAN, 1.0 QMEAN to 1.5 QMEAN, 1.5 QMEAN to 2.0 QMEAN, 

2.0 QMEAN to 2.5 QMEAN, 2.5 QMEAN to 3.0 QMEAN, >3 QMEAN), following 

Gordon et al.(2004), and using Shannon's entropy measures to quantify the uncertainty of 

flow across these states and months.  Precise details on our implementation of these 

calculations are given by Chinnayakanahalli (2010) and Dhungel (2014). 

15. Flow reversals (R) is the number of changes of trend from the previous day (increasing to 

decreasing or vice-versa) each year averaged for all the years of record.  

16. T50 is the mean across all years of record of the time of the water year by which 50% of 

the total flow has occurred measured in days from October 1. 
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Table A-1: Correlation Matrix 
 

ELFI DAYCV QMEAN Q167 FLDDUR P C M T50 Tp Qmin7 Qmax7 R LFE HFE ZFE 

ELFI 1                

DAYCV -0.73 1               

QMEAN 0.29 -0.41 1              

Q167 0.04 -0.05 0.91 1             

FLDDUR 0.10 -0.06 -0.11 -0.28 1            

P -0.40 0.50 -0.28 -0.16 0.42 1           

C -0.44 0.69 -0.40 -0.16 0.25 0.82 1          

M 0.30 -0.54 0.21 -0.05 0.34 0.06 -0.43 1         

T50 0.06 0.04 -0.18 -0.27 0.47 0.32 0.28 0.07 1        

Tp 0.02 0.05 -0.15 -0.19 0.20 0.12 0.15 -0.04 0.61 1       

Qmin7 0.77 -0.70 0.78 0.55 0.00 -0.47 -0.58 0.36 -0.04 -0.05 1      

Qmax7 0.08 -0.13 0.95 0.97 -0.12 -0.12 -0.18 0.06 -0.17 -0.15 0.61 1     

R 0.42 -0.49 0.35 0.25 -0.47 -0.55 -0.53 0.09 -0.22 -0.08 0.49 0.20 1    

LFE 0.02 -0.02 0.17 0.32 -0.77 -0.42 -0.23 -0.31 -0.49 -0.27 0.07 0.15 0.64 1   

HFE 0.67 -0.62 0.39 0.20 -0.16 -0.45 -0.54 0.37 -0.09 -0.03 0.64 0.22 0.61 0.24 1  

ZFE -0.70 0.71 -0.44 -0.19 0.03 0.47 0.64 -0.52 0.09 0.05 -0.74 -0.25 -0.43 -0.03 -0.78 1 
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Appendix	B:		Watershed	Attributes	Used	in	the	Predictive	Modeling	

Sulochan Dhungel, David G. Tarboton, Jiming Jin, Charles P. Hawkins 

Potential Effects of Climate Change on Ecologically Relevant Streamflow Regimes 

The following watershed attributes were used as candidate predictors in the random forest 

modeling. The bold underlined variables are used in the final random forest model. 

1. TMIN_WS: Watershed average of the coldest month’s PRISM mean monthly air 

temperature. 

2. TMAX_WS: Watershed average of the warmest month’s PRISM mean monthly air 

temperature 

3. TMEAN_WS: Watershed average of the annual mean of the PRISM mean monthly air 

temperature. 

4. DIFF_T: TMAX_WS – TMIN_WS 

5. DELTAT: Watershed average of the seasonal amplitude of mean monthly temperature.   

The amplitude of the annual sin/cos cycle fit to the mean across years of PRISM monthly 

temperature. 

6. SD_TMIN_WS: Standard Deviation across each watershed of the coldest month’s 

PRISM mean monthly air temperature. 

7. SD_TMAX_WS: Standard Deviation across each watershed of the warmest month’s 

PRISM mean monthly air temperature. 

8. MINP_WS: Watershed average of the driest month’s PRISM mean monthly 

precipitation. 
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9. MAXP_WS: Watershed average of the wettest month’s PRISM mean monthly 

precipitation. 

10. MEANP_WS: Watershed average of the annual mean of the PRISM mean monthly 

precipitation. 

11. DIFF_P : MAXP_WS – MINP_WS 

12. DELTAP: Watershed average of seasonal amplitude of precipitation (Woods, 2003).  The 

amplitude of the annual sin/cos cycle fit to the mean across years of PRISM monthly 

precipitation. 

13. PPT50AVG: The point of time in the year (in months counting from the beginning of 

January) at which cumulative annual precipitation passes 50% of the total annual 

precipitation.  This is evaluated for each year from PRISM monthly precipitation as a 

fractional month quantity then averaged across years of record. 

14 – 25. PRECIP_<Month>_SC : Watershed average mean monthly precipitation scaled by 

dividing by mean annual precipitation. (<Month> = Jan, Feb, Mar, Apr, May, Jun, Jul, 

Aug, Sep, Oct, Nov, Dec) 

26. PROPSNX : Watershed average of mean proportion of precipitation that occurs in 

months when max temp < 0 C.  The months with PRISM max temperature < 0 C are 

determined each year and the proportion of precipitation determined for these months 

each year and averaged across years of record. 

27. PRECSNX: Watershed average of the annual average of yearly precipitation that occurs 

in months when max temp < 0 C.   The months with PRISM max temperature < 0 C are 

determined each year and the amount of precipitation summed for these months each year 

and averaged across years of record. 
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28. PROPSNM: Watershed average of mean proportion of precipitation that occurs in 

months when mean temp < 0 C.  The months with PRISM mean temperature < 0 C are 

determined each year and the proportion of precipitation determined for these months 

each year and averaged across years of record. 

29. PREC_SNM: Watershed average of the annual average of yearly precipitation that 

occurs in months when mean temp < 0⁰ C.   The months with PRISM mean temperature 

< 0⁰ C are determined each year and the amount of precipitation summed for these 

months each year and averaged across years of record. 

30. RH_WS: Watershed average of the annual mean of the PRISM mean monthly relative 

humidity. 

31. PETBAR: Watershed average of the mean annual potential evapotranspiration. 

32. RDRYNESS: Climate Dryness Index (Woods, 2003), the ratio of PETBAR to 

MEANP_WS. 

33. DELTAE: Seasonal amplitude of potential evapotranspiration (Woods, 2003). 

34. SEASONALITY: Climate seasonality index (Woods, 2003). 

35. AREA: Watershed Area in sq. km. 

36. ELEV_MEAN: Mean watershed elevation. 

37. ELEV_MIN: Minimum elevation in the watershed. 

38. ELEV_MAX: Maximum elevation in the watershed. 

39. ELEV_STD: Standard Deviation in the watershed. 

40. SHAPE1: Ratio of the watershed area to the square of the longest distance to the outlet on 

the flow path  

41. MEANSLP: Watershed average topographic Slope. 
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42. STDSLP: Standard Deviation of topographic slope. 

43. DDEN: Drainage density in meters of stream per square meter of watershed determined 

from the stream network as created from drop analysis (Tarboton et al., 1988). 

44. HYPSOMETRIC CONVEXITY: Dimensionless elevation-relief ratio calculated as 

(ELEV_MED-ELEV_MIN)/(ELEV_MAX-ELEV_MIN) where ELEV_MED is the 

median elevation within a watershed. 

45. AWCH_AVE: Watershed average of available water capacity of soils 

46. BDH_AVE: Watershed average of soil bulk density. 

47. KFCT_AVE: Watershed average of soil erodibility factor. 

48. OMH_AVE: Watershed mean high value of soil organic matter content. 

49. PRMH_AVE: Watershed mean high values of soil permeability. 

50. WTDH_AVE:Watershed average high values of seasonally high water table(from 

STATSGO). 

51. RDH_AVE: Watershed mean high values to depth to bedrock. 
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